

# Hybrid Integration Platform for Co-Packaged Photonics Using POET's CMOS Based

Dr. Suresh Venkatesan, CEO **POET Technologies Inc.** Updated July 2022

**Optical Interposer** 



## Introduction

Application Proof Points

## Conclusions



## POET's Technology Solution



Adding Patented Waveguide Layers on a Conventional Semiconductor Wafer Enables the Integration of Electronic and Photonic Components at Wafer-Scale POET: NASDAQ | PTK: TSXV



## **POET's Optical Interposer**

### **POET's Optical Interposer : A Co-Packaging Solution**



![](_page_3_Figure_3.jpeg)

- Two layers of low loss optical interconnects
- Multiple electrical redistribution layers with low RF insertion loss
- High throughput visually assisted  $\checkmark$ passive "pick and place" assembly of electronics and photonics ICs and components
- In plane and Out of plane Optical Interfaces

![](_page_3_Figure_9.jpeg)

High Speed PDs Thermistor Pad

9mm

POET: NASDAQ | PTK: TSXV

![](_page_3_Picture_12.jpeg)

### Implementation into a 100G-400G **Optical Engine**

### World's smallest single chip implementation of optical engines for 100-400G communications and beyond

## Large Dielectric Waveguide Platform

- Fundamental Building block is the waveguide
- Most of the industry is using sub-micron silicon waveguides
- Balanced tradeoff between performance and cost associated with dielectric waveguides (SiN) versus Si waveguides
- Market The large core waveguides are optimized for photonic applications

![](_page_4_Figure_5.jpeg)

Sub-micron silicon waveguides

### Smaller mode, susceptible to dimensional variation and surface roughness

- Highly polarization dependent
- Relatively inefficient coupling to Single Mode Fiber and III-V materials
- Has been challenging to create integrated receiver solutions for multiplexed applications in small form factor pluggables POET: NASDAQ | PTK: TSXV

![](_page_4_Figure_10.jpeg)

- Moderately tightly confined and yet larger modes, tolerant of dimensional variation and surface roughness (low loss)
- Polarization Independent, small wavelength dependence due to the use of SiN versus Si
- Passive, efficient edge coupling to SMF Fiber and III-V materials

![](_page_4_Picture_14.jpeg)

### **POET's Dielectric waveguides**

## Comparison between POET's DML engine approach versus conventional CoB DML solutions

![](_page_5_Figure_1.jpeg)

<u>Bill of materials</u>: 34 separate pieces including carriers Active Alignment: 8

![](_page_5_Figure_3.jpeg)

 $\frac{1}{4}$  the footprint

Bill of materials: 1 Active Alignment: 0

![](_page_5_Picture_7.jpeg)

![](_page_5_Figure_8.jpeg)

## **Application Platforms**

### **Directly Modulated Laser Platform**

![](_page_6_Figure_2.jpeg)

6mm

![](_page_6_Picture_3.jpeg)

![](_page_6_Picture_4.jpeg)

### POET: NASDAQ | PTK: TSXV

### FR4

- 100Gbps
- 200Gbps
- 400Gbps
- 800Gbps

### LR4

100Gbps

**Custom Configurations** with multiple engines form factors

### 6.4Tbps

- **DML/EML Implementation**
- **Custom Configurations**
- **Industry leading form factor** with two layer waveguides (optical chiplet : 18mmx18mm)

### **CW Laser Platform**

![](_page_6_Figure_19.jpeg)

### 800Gbps (2x400FR4) and beyond

- Platform with CW lasers compatible with external modulators like Si • **Photonics**
- Extensible to 200G/ $\lambda$  with TFL (thin film LiNbO3) modulators •

### **Remote Light Sources**

- **C** Band and **O** Band Applications
- **CPO and AI applications** •

![](_page_6_Picture_26.jpeg)

### **External Modulator** Flip Chip on platform

### **High Speed PDs**

## Flexible Architectures for multiple applications

![](_page_7_Figure_1.jpeg)

![](_page_7_Picture_2.jpeg)

## **POET's Optical Interposer Differentiators**

### **System Architecture**

- Hybrid integration of different material platforms
- Optimal partitioning for best power/performance/cost
- Extremely broad design freedom
- Athermal waveguides enabling multi channel scalability and expansion

### Wavelength Division Multiplexing (WDM) vs. Parallel **Fiber**

- Use duplex fiber pair instead of multiple SMFs or multi-SMFs
- Compatible with multi-core fiber technology

### Wafer Level OE Testing

- Significant departure from component level testing which much of the industry does
- High assembly yields through pick and place of known good die POET: NASDAQ | PTK: TSXV

### Wafer Level Packaging

- Use automated pick-place equipment to enable high speed and low cost manufacturing
- Reduce industry assembly costs from as much as 70% to less than 20%
- Passive Laser placement with high coupling efficiency

### **Small Form Factor**

- Significantly reduced sizes for the Mux/De-Mux through utilizing the waveguide interposer
- Multi-engine implementation in a standard QSFP form factor

### **Utilization of Si packaging capabilities**

 2.5D and 3D Interposer functionality for copackaging of electronics/photonics with Thru Silicon Vias

![](_page_8_Picture_21.jpeg)

![](_page_9_Picture_0.jpeg)

## Introduction

Application Proof Points

## Conclusions

![](_page_9_Picture_5.jpeg)

## 100G CWDM Optical Engine

### TRANSMITTER

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

- Excellent Eye Margin and Extinction ration across the temperature range for Data Centers
- DML engine is extensible in performance from 100G -> 200G 400G
- POET can offer the lowest cost, highest density DML engine by incorporating 56Gbaud DMLs into its platform
- Competitive solution for Co-packaged optics

![](_page_10_Picture_8.jpeg)

![](_page_10_Figure_9.jpeg)

## 200G FR4 Optical Engine

Common Optical Engine meeting the requirements of 100/200G

### 200G Optical Engine on Evaluation Board

![](_page_11_Figure_3.jpeg)

Excellent 200G PAM4 signals through the Optical Interposer 200G Rx also shows excellent performance (not shown)

![](_page_11_Picture_6.jpeg)

POET: NASDAQ | PTK: TSXV

![](_page_11_Picture_8.jpeg)

### **Optical Performance**

## 400G/800G FR4 Receiver Performance

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_12_Figure_3.jpeg)

![](_page_12_Figure_5.jpeg)

## 100/200G LR4 Solutions

### 100G LR4 Optical Engines created utilizing the same fundamental platform as 100G CWDM

![](_page_13_Figure_2.jpeg)

POET: NASDAQ | PTK: TSXV

![](_page_13_Picture_4.jpeg)

## Scaling to high bit rates – Spatial Division Multiplexing

### 8 Transmit Lanes -> 2x FR4 solutions for 800Gbps Tx

### 16 Receive Lanes – 1.6Tbps Rx

![](_page_14_Figure_3.jpeg)

POET: NASDAQ | PTK: TSXV

9.5mm

![](_page_14_Picture_6.jpeg)

## 2 x 400G FR4 : Optical chiplets assembled in 2 x or 4 x configurations

![](_page_15_Figure_1.jpeg)

### **OSFP** Package Footprint

![](_page_15_Figure_3.jpeg)

POET's 2x400G FR4 solution readily fits inside an OSFP package and in fact can readily fit inside the smaller QSFP-DD factor

- Smaller the form factor the higher the face plate density -
- Integrated TIAs and Driver (not shown) simplifies board design
- Flip chip mounted components with Through Silicon Vias simplifies board \_ assembly and eliminates the deleterious RF effects of wirebonds
- High density chiplet approach enables scaling to 1.6Tbps in a OSFP-XD package being discussed for 1.6Tbps (may also extend to 3.2Tbps depending on the gear box)
- Building block is the 400G Tx and Rx engine architected to be assembled as chiplets

![](_page_15_Picture_11.jpeg)

![](_page_15_Picture_12.jpeg)

## 8-Ch CW-WDM Laser Array (400GHz spacing)

![](_page_16_Figure_1.jpeg)

- Design feasibility established for the Multiplexer/Splitter combination
- Link budget at a median of 4dB into the fiber

![](_page_16_Picture_4.jpeg)

![](_page_16_Picture_7.jpeg)

### High Efficiency 1x8 MMI based splitter

## Next generation External Cavity Lasers

Novel design leveraging POET's low loss waveguides to create a "hybrid" external cavity laser

![](_page_17_Figure_2.jpeg)

- Novel and patented Grating design to form sub-nm high reflectivity stop bands for wavelength selection
- Front and Back Facet reflectivity at desired values using grating designs integrated into the Interposer
- 12pm/°C wavelength shift enable tight wavelength spacings for >4 channel applications without TEC
- High Reflectivity sub-nm stop band possible with grating design on Interposer Not possible with conventional DBR mirrors
- Simulated and measured reflectivity spectra for multiwavelength applications overlaid with designed gain chip (AR/AR) for high power hybrid external cavity lasers

POET: NASDAQ | PTK: TSXV

![](_page_18_Picture_0.jpeg)

## Introduction

## Application Proof Points

## Conclusions

![](_page_18_Picture_5.jpeg)

## **Optical Interposer Summary**

- POET has developed a Wafer Scale Hybrid Integrated Photonics Packaging Platform compatible DML, CW and EML Lasers
- Low Loss Transmission and Coupling with passive placement
  - Low Waveguide loss : 0.2dB/cm  $\mathbf{x}$
  - Athermal Waveguides : CWL shift of 12pm/°C
  - Median CW/EML Laser Coupling Loss : **1.0** (with Spot Size Converter); DML Coupling Loss : **4.0dB** (without Spot Size Converter)
  - In plane "Butt Coupling" to SMF : 0.5dB; Vertical "Out of Plane" Coupling to MMF/PD : 0.5dB  $\mathbf{\mathbf{x}}$
  - Established reference planes for passive wafer scale packaging of hybrid components  $\mathbf{\mathbf{x}}$
  - **High performance passive components** (Multiplexers, De-multiplexers, Mach Zehnder interferometers)
- POET has developed 100/200G Optical engines (CWDM4, LR4) using flip chip DML lasers
  - Optical engines deliver superior performance at industry leading cost, form factor and scale with wafer scale passive assembly
- POET has developed 400G/800G Receive Optical engines (FR4) with extensibility to 1.6Tbps
- The Optical Interposer unlocks the packaging bottleneck in photonics (Laser and Fiber Attach) by providing an efficient and low loss packaging solution
- The Optical Interposer is THE ONLY chip scale integrated solution for modulated lasers (DML, EML) extending the applicability of these devices into the Tb era

![](_page_19_Picture_15.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)